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TABLE I

I.!easured values of dielectric constant at 10 GHz “-

Material Measured dielectric lfeasured dielectric Available dxe-
constant by
l-tbickness method” ~b~e%rnethod %%&%

d=b/4 d= b/2

Benzene (20°C) 1.47 1.79 2.27 2.285 [4]

(:t42:@&) and

Cyclohexane 1.43 1.66 2.04 2.024 [41

(20%) (at 200C and
9.4 GHz)

Perspsx 2.46 2.55 2.61 2.60 [5]
(at 5.0 GHz)

* -e thickness results are onlv for conma.ison.

the slotted waveguide such that the required thickness of the di-
electric layer is obtained. The guide wavelength is measured for

two thicknesses with the help of the probe in the slot and the stand-
ing wave ratio (SWR) meter. Knowing the frequency, the two

thicknesses, and the corresponding wavelengths, the dielectric con-
stant is evaluated using (13). Some of the results are given in
Table I. Values of the dielectric constant are also calculated using

(I)-(3) for two thicknesses separately and reporte~ in the same

table.

DISCUSSION

The experimental values of the dielectric constants of benzene,

cyclohexane, and Perspex, obtained by using the two thickness
formulation, are in good agreement with the corresponding avail-
able values in the literature. The formulation in the proposed method

does not require any quasi-static approximation which is needed in

the cavity perturbation method. Also in the present method the
problem of mode jumping does not exist. However, the propagation
of higher order modes in such an H-plane loaded waveguide [2] can

be avoided by careful selection of two thicknesses of the dielectric

material. For example, c, S 2.66 and ~ S 10 GHz, higher order
modes do not propagate for d S b/2. Our results indicate that the
one thickness method fails to give agreeable values of c,. It seems
that there is some experimental error in the one thickness method
and it gets cancelled when the two thickness method is used. The

other advantage of this twothlckness method is that (11) and (12)
can be solved both graphically and numerically, while for the one
thickness method no convenient graphical method is available. In

order to make thk method more practicable, tables for e, can be

made for various combinations of h$l and &z. Also the proposed
method does not require asophisticated sample holder used in other
methods. It uses commonly available slotted waveguide, but the

use is restricted to noncorrosive materials.
Theresults obtained for liquids and solids are accurate to within

0.8 percent of the values available in the literature. The guide
wavelength and the thickness of the dielectric slab are normally
measured to the accuracy of 0.005 cm, and an error of this magni-
tude corresponds to less than 1 percent in c..
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A Finite DilYerence Method for the Solution of

Electromagnetic Waveguide Discontinuity Problems

G. MUR

Ab.sfract-A finite difference method for the numerical solution

of electromagnetic waveguide discontinuity problems is presented.

The method of boundary relaxation is applied, using finite differ-

ence techniques in the nonuniform eection of the waveguide and

using a modal representation of the field in the uniform sections of

the waveguide.

To illustrate the process some two-dimensional diffraction prob-

lems in an electromagnetic waveguide with rectangular cross section

are solved.

I. INTRODUCTION

Finite difference methods for the numerical solution of boundary

value problems are liiited to problems involving only relatively

small regions, due to limitations on computer time and storage

requirements. Applying the method of “boundary relaxation,”

Silvester and Cermak [1 ]-[3], Richter [4], and Sandy and Sage [5]

have been able to reduce considerably the number of mesh points

required and thus have reduced computing time and storage prob-

lems. The method of boundary relaxation involves the choice of an

appropriate artificial boundary that limits the region to which the
finite difference scheme is applied.

Inthis short paper an alternative method todetermine the field

distribution ontheartificial boundary is described. Contrary to the
method indicated above, it does not require the computation and
storage of a large matrix and is therefore, in general, less storage
and time consuming. The artificial boundary in our configuration is

chosen such that the field in a suitably chosen exterior region can
essilybe expressed in terms of some type of modal representation of
the wave function. To illustrate the process we solve some two-

dimensional diffraction problems in an electromagnetic waveguide

with rectangular cross section. Themodal representation of the field
intheexterior domain hmalsobeen used by Patwari and Davies [6]

in their computation of the field scattered by conducting cylinders.
However, they did not employ boundary relaxation, but used a

direct method to solve the relevant system of equations.

II. FORMULATION OFTEE PROBLEM

As anexample illustrating our version of the technique of bound-
ary relaxation, we determine the scattering properties of a cylin-

drical obstacle and/or a cylindrical wall deformation present in a

finite section of an otherwise uniform electromagnetic waveguide

with rectangular cross section. To locate a point in the configur~

tion, aright-handed Cartesian coordinate system z,~,z is introduced.
The z axis is chosen parallel to the axis of the waveguide; the y axis

is taken parallel to the direction of cylindricity of the obstacle and/or
the wall deformation. The waveguide walls and the obstacle are

assumed to be electrically perfectly conducting. Themedlum inside
the waveguide is linear, homogeneous, isotropic, and lossless; its
electromagnetic properties are characterizedb~ apermittivity t and
a permeability p. The analysis is carried out m terms of LSE and
LSM fields [7], [8]. As the obstacle and/or the deformed wave-
guide walls are uniform in the ~-direction, the total field will show
the same y-dependence as the prescribed incident field. Furthermore,
no coupling between LS13 and LSM fields takes place.

A longitudinal cross section of the configuration to be investi-

gated is shown in Fig. 1. The nonuniformity of the waveguide is

assumed to be located in the region between the reference planes
z = Z1 and ,2 = Z2. All field quantities are assumed to vary sinus-

oidally in time with angular frequency co. The complex time factor
exp (id) is omitted in the formulas.

An LSE field is an electromagnetic field in the configuration for
which Ev = O and Hv # O. Hv can be written as

H. = YZ(x,z) sin (nry/b), (n = 1,2,... ) (1)
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deformed wall In these expressions & andp~ denote the reflection factor for the
X=a mth mode.

I 1
I In the region Z, < z < m the field consists of a superposition of

uniform ~

;%?%’

I
bstacle ; umform transmitted modes that are either traveling or decaying exponen-

sectlon ,
I section tially in the positive z-duection. Hence

+x
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X=(J II = ~ T.q.+, for LSE fields
Z=z, m-o

Fig. 1. Cross section of a rectangular waveguide with a cylindrical
obstacle and cylindrical y deformed walls.

.

@ = z r.%+, for LSM fields. (9)
m-l

where b is the internal dimension of the structure in the y-direction. In these expressions T~ and r~ denote the transmission factor for

In the uniform sections – ~ < z < ZI and Z* < z < m of the wave- t,he mth mode.

guide (see Fig. 1), the LSE field can be expressed in terms of LSE
modes which are defined’ as

B. Interior Problem

def
Tm+ = cos (mm/a) exp ( ?%mz), (m = 0,1,2,... ) (2)

with

def

Ym := [ (mT/a )2 – K2]1/2 with Re (y~ ) 20, Im (~~) >0 (3)

and

def

K = [@’w – (nr/b)~]’lZ. (4)

In (2) the upper signs represent modes that are either traveling
or ‘decaying exponentially in the positive z-direction, and the lower

sigm represent modes that are either traveling or decaying exponen-

tially in the negative z-dkection. On the waveguide walls and on

the boundary surface of the obstacle the boundary condition

(~/an)w = O holds, where (a/an) denotes the directional deriv~
tive along the normal to the boundary.

An LSM field is an electromagnetic field in the configuration for
which Ev # O and HU = O. Ev can be written a~

E. = @(x,z) cos (nrry/b), (n = 0,1,2,...). (5)

In the uniform sections of the waveguide the LSM field can be

expressed in terms of Li5M modes which are defined as

In connection with the computation of the field in the region

where the wall is defo~ed and/or the obstacles are present, we

cover the longitudinal wiveguide cross section between the planes
z = .q – h and z = ZZ + h with a square mesh of side length h,

where h is chosen such that a = Nlh and 29 — ZI = N&, where NI
and NZ are positive integers. The reason for extending the mesh into

the regions where the modal expansions hold, is that in that case
the reflection and transmission factors can be determined numer-

ically from values of the field at internal points of the mesh located
in the uniform sections of the waveguide. In the interior region

Z1 — h < z < Z2 + h, the Helmholtz equation (7) is approximated
by the difference equation

$(2 +h,z) +4(Z - h,z) + @(zjz+ h) + 4(%2 – !)
#l (z)z) =

4- K2h2

(lo)

where 4 (X,Z ) denotes the value of either w or @ at a node of the
mesh with the coordinates (z,z ). The error in (10) is of order O (h~ ).
In the LSE ce.se we have, in addition to (7), the boundary condition

(a/an)~ = O. In the LSM case we have the boundary condition
@ = O. An interpolation of degree zero [9], [10] is applied to approx-

imate these boundary conditions.

def III. SOLWTION OF ~~E PROBLEM
@~* = sin (m~z/a) exp ( %v~z), (m = 1,2,... ) (6)

The iteration scheme to solve the problem in the Li3E case pro-
where -y~ is given by (3). On the waveguide walls and on the bound- ceeds as follows.
ary surface of the obstacle the boundary Condition @ = O holds. At a) A starting value of both the field at the nodes of the mesh and
any interior point of the configuration the wave functions ~ and @ of the reflection and transmission factors is chosen.
satisfy the two-d@ensional Helmholtz equation b) The field values at the nodes in the planes z = Z1 - h and

( )

z = 29 + h are computed from the reflection and transmission f ac-

:+~z + K’ {~,~) = O.
~,, tors. In this respect we have [cf. (8) and (9)].

M

In view of the difference in handling the field quantities in the v (nh,zl – h) = Y?iv+ (nh,z; – h) + S R~w~- (nh,zl – h),

exterior domain — co < z < Z1 and 29 < z < ~, i.e., in the uniform
m-o

sections outside the reference planes, and in the interior domain with n = 0,1, ~..,N, (11)

Z1 < z < ZZ’ containing the obstacle and/or wall deformations, we
distinguish an exterior and an interior problem. w (nh,zj + h) = ; T~w~+ (nh,zj + h) (12)

m-o

A. Exterior Problem

In the uniform sections – m < z < z, and z, < z < m the electro-
magnetic fields can be written as a superposition of waveguide modes.
In the region – UI < z < Z* the electromagnetic field consists of a

sing] e incident mode *N+ or @~+ traveling in the positive z-direc-
tion and ~ reflected field consisting of a superpositiofi of modes that
are either traveling or decaying exponentially in the negative z-
direction. The modal expansion in this region is written as

‘z = *N+ +“ 5 &*m–, for LSE fields
~=~

m

@ = QN+ + 2 pm%-, for LSM fields. (8)
--1

in which M + 1 is the number of modes taken into account.

c) New estimates for the field value at the nodes in the interior
region are computed using the method of point successive over-
relaxation [11 ]. The (V + 1 )th estimate of the field value Ot’+l) (Z,Z )
then satisfies the equation

+ 0(’+’) (%2 – h) + 4+) (%8 + h)) + (1 – w)dJ”)(w)

(13)

where u is the so-called relaxation factor (not to be confused with
the angular frequency introduced earlier ). The optimum value of

th~ factor is dlflicult to determine, but O.I= 1.7 turns out to yield
an adequate acceleration in the iteration scheme in many problems

we have investig@ed. Configurations with a small interior region
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and the use of a relatively coarse mesh, however, require a lower
value of u.

d) New estimates of the reflection and transmission factors are
computed from the field values at the planes z = Z1and z = ZZ.At
these planes the modal expansion holds. Hence, at theplanez = Z1
we have

5 Rmwm-(z,zl) =V(z,zl) –*N+(W). (14)
~=~

Theright-hand side of (14) ieknownatthe Nl +1 pointsz = nh,
z = ZI with n = 0,1, . . ..N.. A Fourier cosine series can be con-

structed [cf. (2)]uP toNl + 1 termefrom the field valu~ atth~e
NI + 1 nodes, although a lower number of terms will be used in

the actual numerical process (in practice M is much less than
N, + 1, e.g., M = 5 and N, = 30). From the coefficients of this

series the new estimates of the reflection factors can be determined

easily upon using (14 ) and (2). At the plane z = Z.Zwe have

M

z z’m%+(qz,) = * (%22). (15)
~=~

A Fourier cosine series [cf. (2)] can be constructed up to N, + 1

terms. The number of terms used is the same WI in (14). From the

coefficients of this series new estimates of the transmission factors
can be determined upon using (15) and (2). Also a relaxation pro-

cedure, but with complex relaxation factor, is applied to the deter-
mination of the reflection and transmission factors. Let u@J denote

the current estimate of either a reflection or a transmission factor
and let Ufv+l)’ denote the new estimate obtained as described above,
then we use

,#7+1) = Q,J?+l)J + (1 — Q)a(r) (16)

as the new estimate for th~ factor, where Q denotes the complex
relaxation factor for the reflection and transmission factors. The

process converges with

Q = –ail 1 – 7*h l/(1 – -rmh) (17)

when u pertains to a propagating mode and with

fl=a (18)

when u pertains to an exponentially decaying mode. In (17) and
(18 ) a is a positive real number. The optimum value of a, which is
dependent on the value of the relaxation factor occurring in (13),
has to be determined experimentally: a = 1.25 turne out to yield

an adequate acceleration.
e) If the process has not yet converged to a final value, we return

to b).
The iteration scheme to solve the problem in the LJS’M case is

essentially the same as the iteration scheme in the LSE case. The
optimum values of a and of the relaxation factor w are approxi-
mately the same as those in the LSE case.

Since during the process no large matrices are introduced, it is
obvious that the storage requirement of this method are deter-
mined mainly by the storage requirements of the field d~tribution
at the nodes and not by the so-called ‘ %hlft matrix” as used by

Silvester and Cermak [3] and others. Thie holds even when the
field distribution matrix and the shift matrix are overlayed, since

the largest storage requirement is posed by the shift matrix [3].
On the same grounds, our method is computationally faster. We

do need a matrix in order to store the transverse field distribution
of the modes. This matrix requires the storage of M X (N1 + 1 )

real numbers [i.e., cos (mrah/a ) and sin (rmmh/a) at m = 1,2,.. . ,M
andn = 0,1,. . . ,N, (cf. (11) and (12))], and it can easily be com-

puted and requires a negligible amount of storage. Further, using
the shift matrix the number of multiplications in order to compute
a new estimate of the field value on the boundaries z = ZI — h or
z = ZZ + h is approximately N*2. Using our method, however, this
number of multiplications is 2 X M X N1 + O(~), thk number
being connected with the computations in the steps c) and d). It
is much less than Nlz and makes the process accordingly faster.

The process in solving the interior problem will be divergent as

soon as K%2 has a value which is either equal to or greater than the
first eigenvalue X* of the homogeneous Dirichlet problem associated

with the interior region. ThM is caused by the fact that the coeffi-

cient matrix B associated with our system of finite difference equa-
tions is no longer positive defilte, which is neceeeary for convergence.
The iteration process can again be made convergent by positive

definiting [9], i.e., by multiplying the system of equations by the

transpose BT of B. Now, the matrix C = BTB is positive definite
as long as K2h2 # kn, where X* is the nth eigenvalue of the homo-

geneous Dirichlet problem. C becomes singular at K2h2 = h. and the
system of equations cannot be solved. This difficulty can, in prin-

ciple, be avoided by slightly displacing the” artificial boundaries;

thie leaves the physical problem unchanged, but alters slightly the

values of An.

The convergence of the method of positive definite successive

overrelaxation, however, has turned out to be poor even with
optimally chosen relaxation factors. In order to accelerate th~

convergence we have constructed an analog of the alternating dkec-
tion implicit (ADI ) method developed by Conte and Dames [12]
for the biharmonic equation. The corresponding result, however,

still converges rather poorly, especially when s%2 m x., n = 1,2, . . . .
Therefore, in the following section numerical resulte will only be
given for problems with dhz < hl.

IV. NUMERICAL RESULTS

As an example illustrating the technique described in Section III,

we compute the reflection and the transmission factors of a thick

diaphragm as well as the reflection factor of several combinations
of two triangularly prismatic wall deformations. As the incident
wave we take the dominant TEo,I mode in a waveguide of rectangu-
lar cross section. The dimensions of the waveguide are chosen to

eatisf y the standardized relation b = 2a in the LSE csse and a = 2b
in the LSM case.

A. Thick Diaphragm

A symmetrical diaphragm of width equal to 0.25a has been chosen.
In Figs. 2 and 3 the modulus and the argument of the reflection and

the transmission factors are presented for an incident LSEO,I and
LSMI,0 mode, respectively. The frequency F of the incident field is

chosen to be 1.3, 1.5, and 1.7 times the cutoff frequency FC of the
dominant mode in the waveguide. The results are shown as a func-
tion of d (a – 2d = gap width of the diaphragm).

B. Triangularly Prismatic Wall Deformation

Three different combinations of triangularly prismatic wall defor-
mations have been considered. The longitudinal cross section of the

wall deformations has the form of a right-angled isosceles triangle,

deforming the waveguide wall either inwardly or outwardly. The
height of either triangle is taken to be O.la. Two of these deforma-

tions are placed opposite to each other in three different combinw

tions: a) inward–inward; b) inward–outward; and c) outward–
outward. In both the LSE and the LSM case the modulus of the

reflection factor is shown as a function of the frequency in Fig. 4.
The overall computing time for obtaining a single value of the
reflection and transmission factors for the configurations shown in
Figs. 2, 3, and 4 amounts to 15 s in the LSE case and to 5 s in the
LSM case. The resulting accuracy is better than a few percent which

was satisfactory for our purposes. The accuracy of the result can

easily be improved by continuing the iterative process further and,
if necessary, by choosing a finer mesh. Because of the fast conver-
gence we can use the norm of the displacement vector, i.e., the norm
of the cliff erence between two successive solutions, as a measure
for the error. Also the use of the norm of the displacement of the

reflection and transmission factors only turned out to yield good

results. The advantage of the latter method is that the computation
of the latter norm hardly requires any computation time at all. The
computations ~ave been performed on the IBM 360/65 computer
of the Computing Center of the Delft University of Technology.
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4. Reflection factor of triangularly prismatic wall deformations in
a rectangular wa,veguide.
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Finite-Gap Stripline-Latchiug Circulator

M. E. EL-SHANDWILY, MEMBER, IEEE, AND
ESMAT A. F. ABDALLAH, STUDENT MEMBER, IEEE

Abstract—The stripline-latching circulator with finite gap is

analyzed theoretically. The normalized resonant frequencies of ihe

first-order modes and the normalized circulation frequencies are

obtained numerically for cliff erent values of the gapwidth and

dielectric constant of the ceramic filling the nonmagnetic gap.

I. INTRODUCTION

Recently, Siekanowicz and Schilling [1] presented a theory for
a three-port stripline-latching ferrite-junction circulator. The oper~

tion of the circulator ie achieved by passing a pulse of direct current
through a wire loop which is located between a ferrite cylinder and

a concentric ferrite ring. The upper and lower portions of the ferrite

ring and rod are in cent act with ferrite disks. The circulator is

switched by reversing the polarity of the current puke.

The analysis of Siekanowicz and Schilling is an extension of

Boerna’s [2] and Fay and Comstock’s [3] analyses for the stripline

circulator. However, the effect of the nonmagnetic gap, in which
the wire loop ie located, has not been taken into consideration. In
th~ short paper, we present the theory of the stripline-latchlng circu-
lator with finite-nonmagnetic gap. The effect of the gapwidth and

dielectric material on the circulator performance will be investi-

gated.,

11. ANALYSIS

The configuration of the stripline-latching circulator is shown in

Fig. 1 [1]. In the following analysis, the circulator junction is

divided into three regions; the ferrite post (0 S r < rl ), the non-

magnetic gap (rl S r s rs ), and the outer ferrite ring (rz 5 r S rs ).
The electric fields in the three regions are

r2<r<r3 (3)
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