54 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JANUARY 1974

TABLE 1

Heasured values of dielectric constant at 10 GHz

Material Measured dielectric Measured dielectric Available die-
constant by constant by lectric
1-thickness method  2-thickness method constant
d=h/4 d= b/2

Benzene (20°C) 1.47 1,79 2,27 2,285({4]

(at 20°C and
9.4 GHz)
Cyclohexane 1.43 1.66 2.04 2.024 4]
(20°¢) (at 20°C and
9.4 GHz)
Perspex 2.46 2.55 2,61 2.60 [5]
{at 5.0 GHz)

* One thickness results are only for comparison.

the slotted waveguide such that the required thickness of the di-
electric layer is obtained. The guide wavelength is measured for
two thicknesses with the help of the probe in the slot and the stand-
ing wave ratio (SWR) meter. Knowing the frequency, the two
thicknesses, and the corresponding wavelengths, the dielectric con-
stant is evaluated using (13). Some of the results are given in
Table 1. Values of the dielectric constant are also calculated using
(1)-(8) for two thicknesses separately and reported in the same
table.

Discussion

The experimental values of the dielectric constants of benzene,
cyclohexane, and Perspex, obtained by using the two thickness
formulation, are in good agreement with the corresponding avail-
able values in the literature. The formulation in the proposed method
does not require any quasi-static approximation which is needed in
the cavity perturbation method. Also in the present method the
problem of mode jumping does not exist. However, the propagation
of higher order modes in such an H-plane loaded waveguide [2] can
be avoided by careful selection of two thicknesses of the dielectric
material. For example, ¢ < 2.66 and f < 10 GHz, higher order
modes do no} propagate for d < b/2. Our results indicate that the
one thickness method fails to give agreeable values of ¢. It seems
that there is some experimental error in the one thickness method
and it gets cancelled when the two thickness method is used. The
other advantage of this two thickness method is that (11) and (12)
can be solved both graphically and numerically, while for the one
thickness method no convenient graphical method is available. In
order to make this method more practicable, tables for ¢ can be
made for various combinations of Ay and Ap. Also the proposed
method does not require a sophisticated sample holder used in other
methods. It uses commonly available slotted waveguide, but the
use is restricted to noncorrosive materials.

The results obtained for liquids and solids are accurate to within
0.8 percent of the values available in the literature. The guide
wavelength and the thickness of the dielectric slab are normally
measured to the accuracy of 0.005 cm, and an error of this magni-
tude corresponds to less than 1 percent in e,.
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A Finite Difference Method for the Solution of
Electromagnetic Waveguide Discontinuity Problems

G. MUR

Abstract—A finite difference method for the numerical solution
of electromagnetic waveguide discontinuity problems is presented.
The method of boundary relaxation is applied, using finite differ-
ence techniques in the nonuniform section of the waveguide and
using a modal representation of the field in the uniform sections of
the waveguide.

To illustrate the process some two-dimensional diffraction prob-
lems in an electromagnetic waveguide with rectangular cross section
are solved.

I. INTRODUCTION

Finite difference methods for the numerical solution of boundary
value problems are limited to problems involving only relatively
small regions, due to limitations on computer time and storage
requirements. Applying the method of ‘“boundary relaxation,”
Silvester and Cermak [1]-[3], Richter [4], and Sandy and Sage [5]
have been able to reduce considerably the number of mesh points
required and thus have reduced computing time and storage prob-
lems. The method of boundary relaxation involves the choice of an
appropriate artificial boundary that limits the region to which the
finite difference scheme is applied.

In this short paper an alternative method to determine the field
distribution on the artificial boundary is described. Contrary to the
method indicated above, it does not require the computation and
storage of a large matrix and is therefore, in general, less storage
and time consuming. The artificial boundary in our configuration is
chosen such that the field in a suitably chosen exterior region can
easily be expressed in terms of some type of modal representation of
the wave function. To illustrate the process we solve some two-
dimensional diffraction problems in an electromagnetic waveguide
with rectangular cross section. The modal representation of the field
in the exterior domain has also been used by Patwari and Davies [6]
in their computation of the field scattered by conducting cylinders.
However, they did not employ boundary relaxation, but used a
direct method to solve the relevant system of equations.

II. FORMULATION OF THE PROBLEM

As an example illustrating our version of the technique of bound-
ary relaxation, we determine the scattering properties of a cylin-
drical obstacle and/or a cylindrical wall deformation present in a
finite section of an otherwise uniform electromagnetic waveguide
with rectangular cross section. To locate a point in the configura-
tion, a right-handed Cartesian coordinate system z,y,2 is introduced.
The z axis is chosen parallel to the axis of the waveguide; the y axis
is taken parallel to the direction of cylindricity of the obstacle and/or
the wall deformation. The waveguide walls and the obstacle are
assumed to be electrically perfectly conducting. The medium inside
the waveguide is linear, homogeneous, isotropic, and lossless; its
electromagnetic properties are characterized by a permittivity ¢ and
a permeability u. The analysis is carried out in terms of LSE and
LSM fields [7], [8]. As the obstacle and/or the deformed wave-
guide walls are uniform in the y-direction, the total field will show
the same y-dependence as the presecribed incident field. Furthermore,
no coupling between LSE and LSM fields takes place.

A longitudinal cross section of the configuration to be investi-
gated is shown in Fig. 1. The nonuniformity of the waveguide is
assumed to be located in the region between the reference planes
z =2z and z = 2,. All field quantities are assumed to vary sinus-
oidally in time with angular frequency . The complex time factor
exp (fot) is omitted in the formulas.

An LSE field is an electromagnetic field in the configuration for
which E, = 0 and H, # 0. H, can be written as

Hy = ¥(z,2) sin (nwy/b),  (n =12,++) ¢)
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Fig. 1.
obstacle and cylindrically deformed walls.

where b is the internal dimension of the structure in the y-direction.
In the uniform sections —® < z < 2 and z; < z < ® of the wave-
guide (see Fig. 1), the LSE field can be expressed in terms of LSE
modes which are defined as

def
Un* = cos (mrx/a) exp (Fyme), (m = 0,1,2,-++) (2)
with
def
= [(mr/a)? — @72 with Re (yn) >0, Im (va) =0 (3)
and
def
& = [wPp — (nm/b)2]u2, (4)

In (2) the upper signs represent modes that are either traveling
or decaying exponentially in the positive z-direction, and the lower
signs represent modes that are either traveling or decaying exponen-
tially in the negative z-direction. On the waveguide walls and on
the boundary surface of the obstacle the boundary condition
(8/8n)¥ = 0 holds, where (9/én) denotes the directional deriva-
tive along the normal to the boundary.

An LSM field is an electromsagnetic field in the configuration for
which E, # 0 and H, = 0. E, can be written as

E, = &(z,2) cos (nny/b), (n =0,1,2,+++). (58)
In the uniform sections of the waveguide the LSM field can be
expressed in terms of LSM modes which are defined as

def
®,* = sin (mrz/a) exp (Fynz), (m=12+++) (6)
where v is given by (3). On the waveguide walls and on the bound-
ary surface of the obstacle the boundary condition & = 0 holds. At
any interior point of the configuration the wave functions ¥ and &
satisfy the two-dimensional Helmholtz equation

9
(6—:1:; + 5& + K2> {r,®} = 0. @]

In view of the difference in handling the field quantities in the
exterior domain — e <z <z and 2; < z < =, i.e., in the uniform
sections outside the reference planes, and in the interior domain
21 < z < 23 containing the obstacle and/or wall deformations, we
distinguish an exterior and an interior problem.

A. Exterior Problem

In the uniform sections — © < 2z < z;and 2; < z < o the electro-
magnetic fields can be written as a superposition of waveguide modes.
In the region — « < z < 2 the electromagnetic field consists of a
single incident mode ¥y* or ®y* traveling in the positive z-direc-
tion and a reflected field consisting of a superpositich of modes that
are either traveling or decaying exponentially in the negative z-
direction. The modal expansion in this region is written as

¥ = Uyt + I Ro¥, for LSE fields
m=0 °
& = ®y* + 2 pu®u-,  for LSM fields. ®)

m=1
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In these expressions R, and p denote the reflection factor for the
mth mode.

In the region 2 < z < « the field consists of a superposition of
transmltted modes that are either traveling or decaying exponen-
tially in the positive z-direction. Hence

¥ = 3 T,%,* for LSE fields
m=0

® = 3 rd,*,  for LM fields. 9)
m=1

In these expressions T and 7, denote the transmission factor for
the mth mode.

B. Interior Problem

In connection with the computation of the field in the region
where the wall is deformed and/or the obstacles are present, we
cover the longitudinal waveguide cross section between the planes
z2=2 —h and z = 2, + h with a square mesh of side length &,
where k is chosen such that @ = Nyh and 2, — 2; = Nyh, where Ny
and N are positive integers. The reason for extending the mesh into
the regions where the modal expansions hold, is that in that case
the reflection and transmission factors can be determined numer-
ically from values of the field at internal points of the mesh located
in the uniform sections of the waveguide. In the interior region
z1 — h < z < 23 4 h, the Helmholtz equation (7) is approximated
by the difference equation

(@ + he) + oo — h2) + o(ez+h) +o(z2z—h)
4 — 2h?

? (.’E,Z) =

(10)

where ¢(z,2) denotes the value of either ¥ or & at a node of the
mesh with the coordinates (z,2). The error in (10) is of order 0 (h?).
In the LSE case we have, in addition to (7), the boundary condition
(a/an)\y = 0. In the LSM case we have the boundary condition

= 0. An interpolation of degree zero [97, [10]is applied to approx-
1mate these boundary conditions.

I11. SoLuTiON OF THE PROBLEM

The iteration scheme to solve the problem in the LSE case pro-
ceeds as follows.

a) A starting value of both the field at the nodes of the mesh and
of the reflection and transmission factors is chosen,

b) The field values at the nodes in the planes 2 = 2 — h and
2z = 23 + h are computed from the reflection and transmission fac-
tors. In this respect we have [ef. (8) and (9)].

M
Y (nh,zy — h) = ¥yt (nh,zs — h) + 2 RV, (nhz — h),

m=0

withn = 0,1,-++,N; (11)

M
2 T, (nhze + h)

m=0

¥ (nh,ze + h) = (12)
in which M -+ 1 is the number of modes taken into account.

¢) New estimates for the field value at the nodes in the interior
region are computed using the method of point successive over-
relaxation [117. The (v -+ 1)th estimate of the field value ¢ (z,2)
then satisfies the equation

3 (2,2) = (4 — Kh)L(SCD (2 — h2) + 6 (z + h2)
+ 0 (mz — B) + ¢ (mz + 1)) + (1 — @)@ (@,2)

(13)

where w is the so-called relaxation factor (not to be confused with
the angular frequency introduced earlier). The optimum valug of
this factor is difficult to determine, but w = 1.7 turns out to yield

an adequate acceleration in the iteration scheme in many problqms
we have investigated. Configurations with a small interior region
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and the use of a relatively coarse mesh, however, require a lower
value of w.

d) New estimates of the reflection and transmission factors are
computed from the field values at the planes z = 2 and 2 = 2. At
these planes the modal expansion holds. Hence, at the plane z = 2z,
we have

3 Botu-(z21) = ¥(2,2) — ¥x*(z,m). (14)

m=0

The right-hand side of (14) is known af the N1 + 1 points z = nh,
2 =2 with n = 0,1,--+,N.. A Fourier cosine series can be con-
structed [cf. (2)]up to Ny + 1 terms from the field values at these
Ny + 1 nodes, although a lower number of terms will be used in
the actual numerical process (in practice M is much less than
N;+1, eg., M =5 and N, = 30). From the coefficients of this
series the new estimates of the reflection factors can be determined
easily upon using (14) and (2). At the plane z = 2, we have

S Townt (o) = ¥(2,m). (15)

m=0

A Fourier cosine series [¢f. (2)] can be constructed up to Ny + 1
terms. The number of terms used is the same as in (14). From the
coefficients of this series new estimates of the transmission factors
can be determined upon using (15) and (2). Also a relaxation pro-
cedure, but with complex relaxation factor, is applied to the deter-
mination of the reflection and transmission factors. Let o denote
the current estimate of either a reflection or a transmission factor
and let ¢’ denote the new estimate obtained as described above,
then we use

gD = Qe (1 — 2)e® (16)
as the new estimate for this factor, where Q denotes the complex
relaxation factor for the reflection and transmission factors. The
process converges with

Q= —ai|l — yuh|/(1 — vuh) (17)
when ¢ pertains to a propagating mode and with
Q=a« (18)

when ¢ pertains to an exponentially decaying mode. In (17) and
(18) « is a positive real number. The optimum value of «, which is
dependent on the value of the relaxation factor oceurring in (13),
has to be determined experimentally: & = 1.25 turns out to yield
an adequate acceleration.

e) If the process has not yet converged to a final value, we return
tob).

The iteration scheme to solve the problem in the LSM case is
essentially the same as the iteration scheme in the LSE case. The
optimum values of « and of the relaxation factor w are approxi-
mately the same as those in the LSE case.

Since during the process no large matrices are introduced, it is
obvious that the storage requirements of this method are deter-
mined mainly by the storage requirements of the field distribution
at the nodes and not by the so-called “‘shift matrix’’ as used by
Silvester and Cermak [37] and others. This holds even when the
field distribution matrix and the shift matrix are overlayed, since
the largest storage requirement is posed by the shift matrix [3].

On the same grounds, our method is computationally faster. We
do need a matrix in order to store the transverse field distribution
of the modes. This matrix requires the storage of M X (N; + 1)
real numbers [i.e., cos (manh/a) and sin (mrnh/a) atm = 1,2,««+ M
and n = 0,1,---,N; (cf. (11) and (12))7, and it can easily be com-
puted and requires a negligible amount of storage. Further, using
the shift matrix the number of multiplications in order to compute
a new estimate of the field value on the boundaries 2 = 2; — & or
z = 2 + h is approximately N2 Using our method, however, this
number of multiplications is 2 X M X Ny + 0(M), this number
being connected with the computations in the steps ¢) and d). It
is much less than N and makes the process accordingly faster.

The process in solving the interior problem will be divergent as
soon as «2h? has a value which is either equal to or greater than the
first eigenvalue \; of the homogeneous Dirichlet problem associated

with the interior region. This is caused by the fact that the coeffi-
cient matrix B associated with our system of finite difference equa-
tions is no longer positive definite, which is necessary for convergence.
The iteration process can again be made convergent by positive
definiting [9], i.e., by multiplying the system of equations by the
transpose BT of B. Now, the matrix ¢ = BTB is positive definite
as long as «2h? £ \,, where )\, is the nth eigenvalue of the homo-
geneous Dirichlet problem. C becomes singular at «%h% = A, and the
system of equations cannot be solved. This difficulty can, in prin-
ciple, be avoided by slightly displacing the- artificial boundaries;
this leaves the physical problem unchanged, but alters slightly the
values of An.

The convergence of the method of positive definite successive
overrelaxation, however, has turned out to be poor even with
optimally chosen relaxation factors. In order to accelerate this
convergence we have constructed an analog of the alternating direc-
tion implicit (ADI) method developed by Conte and Dames [12]
for the biharmonic equation. The corresponding result, however,
still converges rather poorly, especially when «?h? ~ N\, n = 1,2, .
Therefore, in the following section numerical results will only be
given for problems with «?A? < A\

IV. NUMERICAL RESULTS

As an example illustrating the technique described in Section ITI,
we compute the reflection and the transmission factors of a thick
diaphragm as well as the reflection factor of several combinations
of two triangularly prismatic wall deformations. As the incident
wave we take the dominant TE,; mode in a waveguide of rectangu-
lar cross section. The dimensions of the waveguide are chosen to
satisfy the standardized relation b = 2q in the LSE case and a = 2b
in the LSM case.

A. Thick Diaphragm

A symmetrical diaphragm of width equal to 0.25¢ has been chosen.
In Figs. 2 and 3 the modulus and the argument of the reflection and
the transmission factors are presented for an incident LSE,; and
LSM, o mode, respectively. The frequency F of the incident field is
chosen to be 1.3, 1.5, and 1.7 times the cutoff frequency FC of the
dominant mode in the waveguide. The results are shown as a fune-
tion of d (¢ — 2d = gap width of the diaphragm).

B. Triangularly Prismatic Wall Deformation

Three different combinations of triangularly prismatic wall defor-
mations have been considered. The longitudinal cross section of the
wall deformations has the form of a right-angled isosceles triangle,
deforming the waveguide wall either inwardly or outwardly. The
height of either triangle is taken to be 0.1a. Two of these deforma-~
tions are placed opposite to each other in three different combina-
tions: a) inward-inward; b) inward-outward; and ¢) outward-
outward. In both the LSE and the LSM case the modulus of the
reflection factor is shown as a function of the frequency in Fig. 4.
The overall computing time for obtaining a single value of the
refléction and transmission factors for the configurations shown in
Figs. 2, 3, and 4 amounts to 15 s in the LSE case and to 5 s in the
LSM case. The resulting accuracy is better than a few percent which
was satisfactory for our purposes. The accuracy of the result can
easily be improved by continuing the iterative process further and,
if necessary, by choosing a finer mesh. Because of the fast conver-
gence we can use the norm of the displacement vector, i.e., the norm
of the difference between two successive solutions, as a measure
for the error. Also the use of the norm of the displacement of the
reflection and transmission factors only turned out to yield good
results. The advantage of the latter method is that the computation
of the latter norm hardly requires any computation time at all. The
computations have been performed on the IBM 360/65 computer
of the Computing Center of the Delft University of Technology.
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Finite-Gap Stripline-Latching Circulator

M. E. EL-SHANDWILY, MEMBER, IEEH, AND
ESMAT A. F. ABDALLAH, STUDENT MEMBER, IEEE

Abstract—The stripline-latching circulator with finite gap is
analyzed theoretically. The normalized resonant frequencies of the
first-order modes and the normalized circulation frequencies are
obtained numerically for different values of the gapwidth and
dielectric constant of the ceramic filling the nonmagnetic gap.

I. INTRODUCTION

Recently; Siekanowicz and Schilling [17] presented a theory for
a three-port stripline-latching ferrite-junction circulator. The opera-
tion of the circulator is achieved by passing a pulse of direct current
through a wire loop which is located between a ferrite cylinder and
a concentric ferrite ring. The upper and lower portions of the ferrite
ring and rod are in contact with ferrite disks. The circulator is
switched by reversing the polarity of the.current pulse.

The analysis of Siekanowicz and Schilling is an extension of
Bosma’s [2] and.-Fay and Comstock’s [3] analyses for the stripline
circulator. However, the effect of the nonmagnetic gap, in which
the wire loop is located, has not been taken into consideration. In
this short paper, we present the theory of the stripline-latching circu- .
lator with finite-nonmagnetic gap. The effect of the gapwidth and
dielectric material on the circulator performance will be investi-
gated. :

II. ANALYSIS

The configuration of the stripline-latching circulator is shown in
Fig. 1 [1]. In the following analysis, the circulator junction is
divided into three regions; the ferrite post (0 <r <), the non-
magnetic gap (r; < r <'r;), and the outer ferrite ring (ro <7 < r3).
The electric fields in the three regions are

Et

= Jn(x) (aneiné + neind), 0<r<n 68!

BT = J.(y) (baei™ + b_ne™im#) 4 Yu(y) (Cuei® + C_pemin®),
rn<r<rn (2)

B = J.(2) (dati™ + d_ug™i#) + Yo (2) (frein + J_ne7int),
re <7 <1y (3)
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